DSE Math M2 2019 ANS

Posted: April 23, 2020 in Mathematics
Tags: , , ,

 

DSE_M2_2019_Q1

\displaystyle f(1+h)-f(1) = \frac{10(1+h)}{7+3(1+h)^2}-\frac{10}{7+3} = \frac{10+10h}{10+6h+3h^2}-\frac{10+6h+3h^2}{10+6h+3h^2}

\displaystyle =\frac{4h-3h^2}{10+6h+3h^2}

\displaystyle f'(1) = \lim_{h\to0} \frac{f(1+h)-f(1)}{h} = \lim_{h\to0} \frac{1}{h}\cdot\frac{4h-3h^2}{10+6h+3h^2} = \lim_{h\to0} \frac{4-3h}{10+6h+3h^2}

\displaystyle =\frac{4}{10} = \frac25

DSE_M2_2019_Q2

(a)

P(x) = (x+\lambda)((x+\lambda)^5-15)+4(3-2(x+\lambda)^2)

= (x+\lambda)^6-15(x+\lambda)+12-8(x+\lambda)^2

x^3 term: \displaystyle \binom{6}{3} x^{6-3} \lambda^3 = \frac{6\cdot5\cdot4}{3\cdot2}\lambda^3x^3 = 160x^3

20\lambda^3=160

\lambda^3=8

\lambda = 2

(b)

P'(x) = 6(x+2)^5-15-16(x+2)

P'(0) = 6(2)^5 - 15 - 16(2) = 6\cdot32-15-32 = 5\cdot32-15 = 160-15=145

DSE_M2_2019_Q3

(a)

\displaystyle V=-2\int t \text{ d}t = -t^2 + C

\displaystyle V(0) = C = 580 \quad\Rightarrow \quad V=-t^2+580

V(24) = -24^2+580 = 4

The claim is correct because the vessel has 4 cm³ of liquid X at the end of the experiment.

(b)

V=h^2+24h, \quad V'=2hh'+24h'

\displaystyle h'=\frac{V'}{2h+24}

When t = 18,

V(18) = h^2 + 24h

-18^2+580 = h^2 + 24h

h^2+24h-256=0

(h+32)(h-8)=0

h=8 \quad (\text{reject } h=-32)

Then,

\displaystyle \frac{\text{d}h}{\text{d}t}\bigg|_{t=18} = \frac{-2(18)}{2(8)+24} = -\frac{9}{10}

DSE_M2_2019_Q4

(a)

\displaystyle g'(x) = \frac{\frac1x \cdot \sqrt{x} - \ln x \cdot\frac{1}{2\sqrt{x}}}{x} = \frac{1}{x}\cdot\left(\frac{1}{\sqrt{x}}-\frac{\ln x}{2\sqrt{x}}\right) = \frac{2-\ln x}{2x\sqrt{x}}

Let g'(x)=0

2-\ln x = 0

x=e^2

If 0<x<e^2 \Rightarrow \ln x < 2 \Rightarrow 2-\ln x > 0 \Rightarrow g'(x)>0

If 99 > x > e^2 \Rightarrow \ln x > 2 \Rightarrow 2-\ln x < 0 \Rightarrow g'(x)<0

Therefore, G has only one maximum point.

(b)

\displaystyle \text{Volume} = \pi\int_1^{e^2} \left(\frac{\ln x}{\sqrt{x}}\right)^2 \text{ d}x = \pi\int_1^{e^2} \frac{\ln^2 x}{x} \text{ d}x

Let w=\ln x, \quad \text{d}w=\dfrac{1}{x}\text{ d}x

\displaystyle = \pi \int_0^2 w^2 \text{ d}w = \frac{\pi}{3} w^3 \bigg|_0^2 = \frac{8\pi}{3}

DSE_M2_2019_Q5

(a)

Let \displaystyle P(n): \quad \sum_{k=n}^{2n} \frac{1}{k(k+1)} = \frac{n+1}{n(2n+1)}

P(1):

\displaystyle LS = \sum_{k=1}^2 \frac{1}{k(k+1)} = \frac12 + \frac{1}{2(3)} = \frac46 = \frac23

\displaystyle RS = \frac{1+1}{1(3)} = \frac23

Hence, P(1) is true.

Assume P(m) is true, then P(m+1):

\displaystyle \sum_{k=m+1}^{2(m+1)} \frac{1}{k(k+1)} = \sum_{k=m}^{2m}\frac{1}{k(k+1)} - \frac{1}{m(m+1)} + \frac{1}{(2m+1)(2m+2)} + \frac{1}{(2m+2)(2m+3)}

\displaystyle = \frac{m+1}{m(2m+1)} - \frac{1}{m(m+1)} + \frac{1}{(2m+1)(2m+2)} + \frac{1}{(2m+2)(2m+3)}

\displaystyle = \frac1m \cdot \frac{(m+1)^2-(2m+1)}{(2m+1)(m+1)} + \frac{1}{2(m+1)}\cdot\frac{2m+3+2m+1}{(2m+1)(2m+3)}

\displaystyle = \frac{m^2}{m(2m+1)(m+1)} + \frac{4m+4}{2(m+1)(2m+1)(2m+3)}

\displaystyle = \frac{m}{(2m+1)(m+1)} + \frac{2m+2}{(m+1)(2m+1)(2m+3)}

\displaystyle = \frac{m(2m+3)+2m+2}{(m+1)(2m+1)(2m+3)}

\displaystyle = \frac{2m^2+5m+2}{(m+1)(2m+1)(2m+3)}

\displaystyle = \frac{(2m+1)(m+2)}{(m+1)(2m+1)(2m+3)}

\displaystyle = \frac{(m+2)}{(m+1)(2m+3)} = \frac{m+1+1}{(m+1)(2(m+1)+1)}

hence, P(m+1) is true. By math induction, P(n) \text{ is true } \forall n \in \mathbb{N} .

(b)

\displaystyle \sum_{k=50}^{200}\frac{1}{k(k+1)} = \sum_{k=50}^{100}\frac{1}{k(k+1)} + \sum_{k=100}^{200}\frac{1}{k(k+1)} - \frac{1}{100(101)}

\displaystyle = \frac{51}{50(101)} + \frac{101}{100(201)} - \frac{1}{100(101)}

\displaystyle = \frac{102}{100(101)} + \frac{101}{100(201)} - \frac{1}{100(101)}

\displaystyle = \frac{101}{100(101)} + \frac{101}{100(201)}

\displaystyle = \frac{101}{100}\left(\frac{1}{101} + \frac{1}{201}\right)

\displaystyle = \frac{101}{100}\cdot \frac{302}{101\cdot201}

\displaystyle = \frac{302}{20100}

\displaystyle = \frac{151}{10050}

DSE_M2_2019_Q6

(a) (i)

Let \displaystyle A=\begin{pmatrix} 1 & -2 & -2 \\ 5 & \alpha & \alpha \\ 7 & \alpha-3 & 2\alpha+1 \end{pmatrix} \qquad b=\begin{pmatrix}\beta \\ 5\beta \\ 8\beta \end{pmatrix}

The system (E) has solution when \det(A) \neq 0

\displaystyle \det A = \begin{vmatrix} 1 & -2 & -2 \\ 5 & \alpha & \alpha \\ 7 & \alpha-3 & 2\alpha+1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 \\ 5 & \alpha & 0 \\ 7 & \alpha-3 & \alpha+4 \end{vmatrix} = (\alpha + 4)(\alpha + 10)

\alpha \neq -4 \quad\text{and}\quad \alpha \neq -10

(a) (ii)

Apply Cramer’s Rule,

\displaystyle D_y = \begin{vmatrix} 1 & \beta & -2 \\ 5 & 5\beta & \alpha \\ 7 & 8\beta & 2\alpha+1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -2 \\ 5 & 0 & \alpha \\ 7 & \beta & 2\alpha+1 \end{vmatrix} = -\beta(\alpha+10)

So,

\displaystyle y = \frac{D_y}{\det A} = \frac{-\beta(\alpha+10)}{(\alpha+4)(\alpha+10)} = -\frac{\beta}{\alpha+4}

(b) If \alpha = -4, then A^{-1} doesn’t exist. So the only way that Ax = b having a solution is when b is a zero vector or \beta = 0.

Now, we want the system (E) to be inconsistent, so \beta \neq 0.

DSE_M2_2019_Q7

(a)

\displaystyle \int e^x\sin \pi x \text{ d}x = \int \sin \pi x \text{ d}e^x

\displaystyle = e^x \sin \pi x - \pi \int e^x \cos \pi x \text{ d}x

\displaystyle = e^x \sin \pi x - \pi \int \cos \pi x \text{ d}e^x

\displaystyle = e^x \sin \pi x - \pi e^x \cos \pi x - \pi^2 \int \cos \pi x \text{ d}e^x

\displaystyle = \frac{e^x \sin \pi x - \pi e^x \cos \pi x}{1+\pi^2} + C

(b)

\displaystyle \int_0^3 e^{3-x} \sin \pi x \text{ d}x

Let t = 3-x \qquad -\text{d}t = \text{d}x

\displaystyle = \int_0^3 e^t \sin \pi(3-t) \text{ d}t

\displaystyle = \int_0^3 e^t \sin (3\pi-\pi t) \text{ d}t

\displaystyle = \int_0^3 e^t (\sin 3\pi \cos \pi t - \cos 3\pi \sin \pi t ) \text{ d}t

\displaystyle = \int_0^3 e^t \sin \pi t \text{ d}t

\displaystyle = \frac{e^t \sin \pi t - \pi e^t \cos \pi t}{1+\pi^2} \bigg|_0^3

\displaystyle = \frac{1}{1+\pi^2} (-\pi e^3(-1)-(0-\pi))

\displaystyle = \frac{\pi e^3 + \pi}{1+\pi^2}

DSE_M2_2019_Q8

(a)

\displaystyle h'(x) = \frac{2x^2-7x+8}{x} = \frac{2(x^2-\frac72 x)+8}{x} = \frac{1}{x}\left(2\left(x^2-\frac72x+\frac{49}{16}-\frac{49}{16}\right)+8\right)

\displaystyle = \frac{1}{x}\left(2\left(x-\frac72\right)^2-\frac{49}{8}+\frac{64}{8}\right) = \frac1x\left(2\left(x-\frac72\right)^2+\frac{15}{8}\right) > 0 \quad \text{since } x>0

Therefore, h(x) is an increasing function for x > 0.

(b) (i)

\displaystyle h(x) = \int \frac{2x^2-7x+8}{x} \text{ d}x = \int 2x - 7 + \frac8x \text{ d}x

\displaystyle = x^2 - 7x + 8 \ln |x| + C = x^2 - 7x + 8 \ln x + C \quad \text{since } x>0

To find C, plug in the point (1, 3).

1^2 - 7 + 0 + C = 3 \quad\Rightarrow\quad C=9

\therefore h(x) = x^2-7x+8\ln x +9

(b) (ii)

\displaystyle h''(x) = \left(\frac{2x^2-7x+8}{x}\right)' = \left(2x-7+\frac8x\right)' = 2 - \frac{8}{x^2}

Let h''(x)=0,

\displaystyle 2-\frac{8}{x^2}=0

\displaystyle 2=\frac{8}{x^2}

\displaystyle x^2=4

\displaystyle x=2 \quad (\text{reject }x=-2)

h(2) = 2^2-7(2)+8\ln 2 + 9 = 8\ln 2 -1

To show that this is an inflection point:

For 0 < x < 2,

\displaystyle x^2<4 \Leftrightarrow 2x^2<8 \Leftrightarrow 2<\frac{8}{x^2} \Leftrightarrow h''(x) = 2-\frac{8}{x^2}<0

For x > 2,

\displaystyle x^2>4 \Leftrightarrow 2x^2>8 \Leftrightarrow 2>\frac{8}{x^2} \Leftrightarrow h''(x) = 2-\frac{8}{x^2}>0

Therefore, the inflection point is (2, 8 \ln 2 - 1).

DSE_M2_2019_Q9

(a) Equation of L:

\displaystyle y'=\frac{-2x}{6\sqrt{12-x^2}} = -\frac{x}{3\sqrt{12-x^2}}

\displaystyle y'(3) = -\frac{3}{3\sqrt3} = -\frac1{\sqrt3}

\displaystyle y(3) = \frac{1}{3} \sqrt{12-3^2} = \frac{\sqrt3}{3}

Then plug them into the point slope form of the equation.

\displaystyle y-\frac{\sqrt3}{3} = -\frac{1}{\sqrt3}(x-3)

\displaystyle \sqrt3 y-1 = -(x-3)

x + \sqrt3 y - 4 = 0

(b) (i)

\displaystyle L: \quad y = \frac{4-x}{\sqrt3}

\displaystyle \frac{4-x}{\sqrt3} = \sqrt{4-x^2}

\displaystyle \frac{(4-x)^2}{3} = 4-x^2

16-8x+x^2=12-3x^2

4x^2-8x+4=0

x^2-2x+1=0

x=1

y=\sqrt{4-1^2}=\sqrt3

So, point of contact = (1, \sqrt3)

(b) (ii) Intersection of C and \Gamma.

\displaystyle \sqrt{4-x^2} = \frac13\sqrt{12-x^2}

\displaystyle 9(4-x^2) = 12-x^2

\displaystyle 36-9x^2=12-x^2

\displaystyle 8x^2=24

\displaystyle x=\sqrt3 \quad (\text{reject }x=-\sqrt3) \text{ since } 0<x<2

y=\sqrt{4-3}=1

Therefore, intersection of C and \Gamma = (\sqrt3,1).

(b) (iii)

\displaystyle \text{Area} = \int_1^{\sqrt3} \frac{4-x}{\sqrt3} - \sqrt{4-x^2} \text{ d}x + \int_{\sqrt3}^3 \frac{4-x}{\sqrt3}-\frac{1}{3}\sqrt{12-x^2} \text{ d}x

\displaystyle = \frac{1}{\sqrt3}\int_1^3 (4-x)\text{ d}x - \int_1^{\sqrt3} \sqrt{4-x^2} \text{ d}x - \frac13\int_{\sqrt3}^3 \sqrt{12-x^2} \text{ d}x

\text{(Let } x=2\sin\theta \text{ in the second integral and } x=\sqrt{12}\sin\theta \text{ in the third integral)}

\displaystyle = \frac{1}{\sqrt3}\left(4x-\frac{x^2}{2}\right)\bigg|_1^3 - 4\int_{\pi/6}^{\pi/3} \cos^2\theta \text{ d}\theta - \frac{1}{3}\cdot12 \int_{\pi/6}^{\pi/3} \cos^2\theta \text{ d}\theta

\displaystyle = \frac{1}{\sqrt3}\left(4(3)-\frac{3^2}{2}-4(1)+\frac{1}{2}\right) - 8 \int_{\pi/6}^{\pi/3} \cos^2 \theta \text{ d}\theta

\displaystyle = \frac{4}{\sqrt3} - 8\int_{\pi/6}^{\pi/3} \frac{1+\cos 2\theta}{2} \text{ d}\theta

\displaystyle = \frac{4}{\sqrt3} - 4\left(\theta+\frac{\sin 2\theta}{2}\right)\bigg|_{\pi/6}^{\pi/3}

\displaystyle = \frac{4}{\sqrt3} - 4\left(\frac{\pi}{3}+\frac{\sqrt3}{4}-\frac{\pi}{6}-\frac{\sqrt3}{4}\right)

\displaystyle = \frac{4\sqrt3}{3} - \frac{2\pi}{3} = \frac{4\sqrt3-2\pi}{3}

DSE_M2_2019_Q10

(a)

\displaystyle \frac{1}{2+\cos 2x} = \frac{1}{2+\cos^2 x - \sin^2 x} = \frac{\sec^2 x}{2\sec^2 x + 1 - \tan^2 x} = \frac{\sec^2 x}{2 \sec^2 x + 1 - (\sec^2 x - 1)}

\displaystyle = \frac{\sec^2 x}{2 + \sec^2 x}

(b)

\displaystyle \int_0^{\pi/4} \frac{1}{2+\cos 2x}\text{ d}x = \int_0^{\pi/4} \frac{\sec^2 x}{2+\sec^2 x}\text{ d}x

\text{Let } w = \tan x

\displaystyle = \int_0^1 \frac{\text{d}w}{3+w^2} = \frac13 \int_0^1 \frac{\text{d}w}{1+(w/\sqrt3)^2} = \frac{1}{\sqrt3} \tan^{-1} \frac{w}{\sqrt3} \bigg|_0^1 = \frac{1}{\sqrt3}\cdot\frac{\pi}{6} = \frac{\pi\sqrt3}{18}

(c)

\displaystyle \int_{-a}^a f(x) \ln(1+e^x) \text{ d}x = \int_{-a}^0 f(x) \ln(1+e^x)\text{ d}x + \int_0^a f(x) \ln(1+e^x) \text{ d}x

\text{Let } x = -w

\displaystyle = \int_0^a f(-w) \ln(1+e^{-w}) \text{ d}w + \int_0^a f(x) \ln(1+e^x) \text{ d}x

\displaystyle = -\int_0^a f(x) \ln \frac{e^x+1}{e^x} \text{ d}x + \int_0^a f(x) \ln(1+e^x) \text{ d}x

\displaystyle = -\int_0^a f(x) \ln (e^x+1) \text{ d}x  + \int_0^a f(x) \ln e^x \text{ d}x + \int_0^a f(x) \ln(1+e^x) \text{ d}x

\displaystyle = \int_0^a f(x) \ln e^x \text{ d}x = \int_0^a x f(x) \text{ d}x

(d)

Since \displaystyle \frac{\sin 2(-x)}{(2+\cos 2(-x))^2} = -\frac{\sin 2x}{(2+\cos 2x)^2}, then by (c),

\displaystyle \int_{-\pi/4}^{\pi/4} \frac{\sin 2x}{(2+\cos 2x)^2} \ln(1+e^x) \text{ d}x = \int_0^{\pi/4} x \cdot \frac{\sin 2x}{(2+\cos 2x)^2} \text{ d}x = \frac12 \int_0^{\pi/4} x \text{ d}\left(\frac{1}{2+\cos2x}\right)

\displaystyle = \frac12 \left(\frac{x}{2+\cos2x}\bigg|_0^{\pi/4} - \int_0^{\pi/4}\frac{1}{2+\cos2x}\text{ d}x \right) = \frac12\left(\frac{\pi/4}{2+0}-\frac{\pi\sqrt3}{18}\right)

\displaystyle = \frac12\left(\frac{\pi}{8}-\frac{\pi\sqrt3}{18}\right) = \frac{\pi}{16} - \frac{\pi\sqrt3}{36}

DSE_M2_2019_Q11

(a)

\displaystyle M^2 = \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix} = \begin{pmatrix} -3 & -28 \\ 4 & 29 \end{pmatrix} = -4\begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

\displaystyle \therefore a = -4, b=5

(b)

\displaystyle \text{Let }  P(n): \quad 6M^n=(1-(-5)^n)M+(5+(-5)^n)I \quad \forall n\in\mathbb{N}

When n = 1,

LS = 6M

RS = (1-(-5))M + (5+(-5))I = 6M = LS

P(1) is true.

\displaystyle \text{Assume } P(k): \quad 6M^k=(1-(-5)^k)M+(5+(-5)^k)I

P(k+1):

\displaystyle 6M^{k+1} = 6M^k\cdot M = \left(\left(1-(-5)^k\right)M+\left(5+(-5)^k\right)I\right)\cdot M

\displaystyle = \left(1-(-5)^k\right)M^2+\left(5+(-5)^k\right)M

By (a)

\displaystyle = \left(1-(-5)^k\right)(-4M+5I)+\left(5+(-5)^k\right)M

\displaystyle =\left(-4+4(-5)^k+5+(-5)^k\right)M + \left(5-5(-5)^k\right)I

\displaystyle =\left(1+5(-5)^k\right)M + \left(5-5(-5)^k\right)I

\displaystyle =\left(1-(-5)^{k+1}\right)M + \left(5+(-5)^{k+1}\right)I

hence P(k + 1) is true.

By Math Induction, P(n) is true for all positive integers n.

(c)

In (b),

\displaystyle 6M^n=(1-(-5)^n)M+(5+(-5)^n)I \quad \forall n\in\mathbb{N}

\displaystyle M^n = \frac{1-(-5)^n}{6}M + \frac{5+(-5)^n}{6}I

\displaystyle =\frac16 \begin{pmatrix} 2(1-(-5)^n)+5+(-5)^n & 7(1-(-5)^n) \\ -(1-(-5)^n) & -6(1-(-5)^n)+5+(-5)^n \end{pmatrix}

\displaystyle =\frac16 \begin{pmatrix} 7-(-5)^n & 7-7(-5)^n) \\ -1+(-5)^n) & -1+7(-5)^n \end{pmatrix}

\displaystyle \det M^n = (\det M)^n = (-12+7)^n = (-5)^n

\displaystyle (M^n)^{-1} = \frac{1}{6(-5)^n} \begin{pmatrix} -1+7(-5)^n & -7+7(-5)^n \\ 1-(-5)^n & 7-(-5)^n \end{pmatrix} = \frac{1}{6(-5)^n} \left( \begin{pmatrix} -1 & -7 \\ 1 & 7 \end{pmatrix} + (-5)^n \begin{pmatrix} 7 & 7 \\ -1 & -1 \end{pmatrix} \right)

\displaystyle =\frac16\begin{pmatrix} 7 & 7 \\ -1 & -1 \end{pmatrix} + \frac{1}{(-5)^n} \cdot \frac16 \begin{pmatrix} -1 & -7 \\ 1 & 7 \end{pmatrix}

Therefore matrices A and B do exist and they are:

\displaystyle A = \begin{pmatrix} 7/6 & 7/6 \\ -1/6 & -1/6 \end{pmatrix} \quad \text{and}\quad B = \begin{pmatrix} -1/6 & -7/6 \\ 1/6 & 7/6 \end{pmatrix}

DSE_M2_2019_Q12

(a)

\left|\overrightarrow{AC}\right| = \left|\overrightarrow{OC} - \overrightarrow{OA}\right| = \left|-5\mathbf{i} - 12\mathbf{j} + t\mathbf{k} - \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}\right| = \left|-6\mathbf{i} - 8\mathbf{j} + (t-2)\mathbf{k}\right|

\left|\overrightarrow{BC}\right| = \left|\overrightarrow{OC} - \overrightarrow{OB}\right| = \left|-5\mathbf{i} - 12\mathbf{j} + t\mathbf{k} +5 \mathbf{i} + 4\mathbf{j} - 8\mathbf{k}\right| = \left|-8\mathbf{j} + (t-8)\mathbf{k}\right|

\displaystyle \left|\overrightarrow{AC}\right| = \left|\overrightarrow{BC}\right|

\displaystyle 36+64+(t-2)^2=64+(t-8)^2

\displaystyle 36+t^2-4t+4=t^2-16t+64

\displaystyle 12t = 24

\displaystyle t=2

(b)

\displaystyle \overrightarrow{AB} = \overrightarrow{OB}-\overrightarrow{OA} = -5\mathbf{i}-4\mathbf{j}+8\mathbf{k}-1\mathbf{i}+4\mathbf{j}-2\mathbf{k} = -6\mathbf{i}+6\mathbf{k}

\displaystyle \overrightarrow{AC} = -6\mathbf{i} - 8\mathbf{j}

\displaystyle \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -6 & 0 & 6 \\ -6 & -8 & 0 \end{vmatrix} = 48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}

(c)

\displaystyle \text{Volume} = \frac16 \left|\overrightarrow{OA} \cdot (\overrightarrow{AB} \times \overrightarrow{AC})\right| = \frac16\left| \left(\mathbf{i}-4\mathbf{j}+2\mathbf{k}\right) \cdot \left(48\mathbf{i}-36\mathbf{j}+48\mathbf{k}\right)\right|

\displaystyle =\frac16 \left|48+144+96\right| = 8 + 24 + 16 = 48

(d) (i)

Since point P is co-planar with points A, B, and C. So, \overrightarrow{AP} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = 0

\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = p\mathbf{i} - \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} = (p-1)\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}

\left((p-1)\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}\right) \cdot \left(48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}\right) = 0

48(p-1) - 144 - 96 = 0

p-1 - 3 - 2 = 0

p=6

Similarly for \overrightarrow{AQ} and \overrightarrow{AR}:

\overrightarrow{AQ} = \overrightarrow{OQ} - \overrightarrow{OA} = q\mathbf{j} - \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} = -\mathbf{i} + (q+4)\mathbf{j} - 2\mathbf{k}

\overrightarrow{AR} = \overrightarrow{OR} - \overrightarrow{OA} = r\mathbf{k} - \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} = -\mathbf{i} + 4\mathbf{j} + (r-2)\mathbf{k}

\overrightarrow{AP} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = -48-36(q+4)-2(48) = 0

36(q+4) + 3(48) = 0

q + 4 + 4 = 0

q = -8

\overrightarrow{AR} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = -48-36(4)+(r-2)(48) = 0

-1-3+r-2=0

r=6

\therefore pqr = 6(-8)(6) \neq 0

(d) {ii}

Let \vec{n} be the normal vector to the plane Pi.

\vec{n} = \overrightarrow{AB} \times \overrightarrow{AB} = 48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}

\displaystyle \hat{n} = \frac{48\mathbf{i} - 36\mathbf{j} + 48\mathbf{k}}{\sqrt{48^2+36^2+48^2}} = \frac{12(4\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})}{12\sqrt{4^2 + 3^2 + 4^2}} = \frac{4\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}}{\sqrt{41}}

The vector of OD is basically a projection vector of the OA vector onto normal vector n.

\displaystyle \overrightarrow{OD} = \left(\overrightarrow{OA} \cdot \hat{n}\right) \hat{n}

\displaystyle = \left((\mathbf{i}-4\mathbf{j}+2\mathbf{k})\cdot(\frac{4\mathbf{i}-3\mathbf{j}+4\mathbf{k}}{\sqrt{41}})\right) \frac{4\mathbf{i}-3\mathbf{j}+4\mathbf{k}}{\sqrt{41}}

\displaystyle = \frac{24}{41} \left(4\mathbf{i}-3\mathbf{j}+4\mathbf{k}\right) = \frac{96}{41}\mathbf{i} - \frac{72}{41}\mathbf{j} + \frac{96}{41}\mathbf{k}

(d) (iii)

\displaystyle \overrightarrow{OE} = \frac{1}{p}\mathbf{i} + \frac{1}{q}\mathbf{j} + \frac{1}{r}\mathbf{k} = \frac{1}{6}\mathbf{i} - \frac{1}{8}\mathbf{j} + \frac{1}{6}\mathbf{k} = \frac{1}{24}\left(4\mathbf{i}-3\mathbf{j}+4\mathbf{k}\right)

\displaystyle = \frac{41}{24^2}\cdot\frac{24}{41}\left(4\mathbf{i}-3\mathbf{j}+4\mathbf{k}\right) = \frac{41}{24^2}\overrightarrow{OD}

hence, \overrightarrow{OD} // \overrightarrow{OE} and therefore, the three points D, E, and O are collinear.

Leave a comment